wolbring

Nanotube Scaffolds for Neural Implants

In Health, nano on September 30, 2006 at 7:44 pm

Friday, September 22, 2006
Tiny carbon fibers are helping stem cells to grow in stroke-damaged brains.

By Jennifer Chu
Stem cells are a promising therapy for stroke and other brain injuries–they can sprout into healthy neurons and may be able to re-establish brain activity in brain-injured patients. While preliminary animal research shows promise, there’s often a common hurdle: adult stem cells have a hard time growing in damaged areas and tend to migrate to healthier regions of the brain.

That makes sense, says Thomas Webster, associate professor of engineering at Brown University, because healthy neurons emit proteins that attract stem cells away from diseased, inactive areas. What’s needed is an “anchor” to keep stem cells fixed to the damaged areas, where they can then differentiate into working neurons, he says.

Webster and his collaborators in South Korea found a possible anchor in carbon nanotubes: tiny, highly conductive carbon fibers that not only act as scaffolds, helping stem cells stay rooted to diseased areas, but also seem to play an active role in turning stem cells into neurons.

Just how this works isn’t clear, but the researchers say their initial results could someday be engineered into a stem cell delivery device for stroke therapy. Webster presented the team’s findings at the American Chemical Society meeting this month in San Francisco.

Prior to this experiment, Webster had been experimenting with the properties of carbon nanotubes as possible neural implant material. Since nanotubes are highly conductive, they’re an ideal template for transmitting electrical signals to neurons. In 2004, Webster was able to stimulate neurons to grow multiple nerve endings along carbon nanotubes. The study attracted the attention of South Korean stroke researchers, who proposed a collaboration: Why not use carbon nanotubes as a template for adult stem cells to grow into neurons? Taking it one step further, the team injected this nano-cocktail directly into the stroke-damaged brain regions of rats.

In order to determine how well the two therapies work together, the team compared the effects of injections of both stem cells and nanotubes with control groups injected with only adult stem cells or carbon nanotubes. After one and three weeks, researchers sacrificed the rats and examined the diseased areas of their brains. In rats who had received only adult stem cells, the cells tended to stray to healthier regions of the brain. But rats given both nanotubes and cells showed new neural growth in stroke-damaged brain regions in as little as a week…….
Read More

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: